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Introduction

Markets of natural gas, oil, electricity and other resources play an
important role in economies of many countries. An essential
component of such markets is a transmission system. Consumers
and producers are located at different nodes, and transmission
capacities of the lines between the local markets are limited. By
recent estimates, the transmission costs may exceed 50% of the
electricity price for the industry consumers in Russia.This costs are
also rather large for natural gas and oil markets.
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Introduction
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Introduction

The previous researches on such markets (Davidson et al., 2009;
Hogan, 1998) consider primarily models with a fixed network
structure. The recent paper (Daylova, Vasin, 2014) determines the
optimal transmission capacity of one line for a two-node market,
taking into account transmission losses and costs of transmission
line construction. The present study aims to generalize these
results for markets with several transmission lines.
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Introduction

We consider the total welfare optimization problem with account
of the production costs, consumers’ utilities and the costs of
transmission lines expansion. The optimal solution of this problem
determines the total welfare value that can further be reallocated
by means of special economic mechanisms letting one to obtain
any Pareto-optimal outcome. The difficulty of the problem is that
an expansion of any line requires valuable fixed costs. If the
optimal set of expanded lines was known, the problem would be
convex. However, the efficient search of this set requires special
methods. In general, the problem is NP-hard (Guisewite, Pardalos,
1990). We distinguish several cases where the social welfare
function is submodular or supermodular with respect to the set of
expanded transmission lines. So the known excluding rules
(Cherenin, 1962; Khachaturov, 1989) are applicable.
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Formal model of the market

Let N denote the set of nodes and L ⊆ N × N be the set of edges.
Every node i ∈ N corresponds to a local perfectly competitive
market. Demand function Di (p) and supply function Si (p) meet
standard conditions. The consumption utility function:
Ui (q) =

∫ q
0 D−1 (v) dv . Si (p) = Arg maxv (pv − ci (v)) , where

ci (v) is the minimal production cost of volume v at node i . The

total profit of producers at node i is Pr i (p) =
∫ p

0 Si (p)dp.
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Formal model of the market

For any (i , j) ∈ L the transmission line is characterized by the
initial transmission capacity Q0

ij , the unit transmission cost e ijt , the

cost of the transmission capacity increment, including fixed cost e ijf
and variable cost e ijv (Qij ,Q

0
ij ). Let qij be the flow from the market

i to market j . The total transmission costs for edge (i , j) are:

Eij (qij) =

{
e ijf + e ijv

(
|qij | ,Q0

ij

)
+ e ijt |qij | , if |qij | > Q0

ij ,

e ijt |qij | , if |qij | ≤ Q0
ij .

(1)
The final transmission capacity Qij is |qij | , if |qij | > Q0

ij , otherwise

it is Q0
ij . The cost of the line expansion is the overnight

construction cost amortized over the life-time Tij of the line using

discount rate r : e ij = r
OCij

1−erTij
; e ijv is a monotonous convex function

of increment (Qij − Q0
ij ).
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The total social welfare

Denote Z (i) the set of nodes connected with node i . Under fixed
flows −→q = (qij , (i , j) ∈ L) and production volumes
−→v = (vi , i ∈ N), the consumption volumes (v̂i , i ∈ N) are
v̂i = vi +

∑
j∈Z(i) qji , i ∈ N. The total social welfare for the

network market is

W (−→q ,−→v ) =
∑
i∈N

[Ui

vi +
∑

l∈Z(i)

qli

− ci (vi )]−
∑

(i ,j)∈L, i<j

Eij (qij).

(2)
An alternative representation of this value is the total profit of all
the agents in the market: producers, consumers and the
transmission system.
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The total social welfare

Indeed, under strategies
−→
Q , −→v , the price pi (

−→
Q , −→v ) at node i

meets the balance equation: Di (pi ) = vi +
∑

j∈Z(i) qji , i ∈ N.
The producers’ profit is Pr i = pivi − Ci (vi ), the consumers’
surplus is CSi =

∫∞
pi

Di (p)dp, and the benefit of the transmission

system is determined as T
(−→p ,−→Q) =∑

(i ,j)∈L, i<j [
(
pj

(−→
Q , −→v

)
− pi

(−→
Q ,−→v

))
qij − Eij(Qij)].

Then
W
(−→
Q ,−→v

)
=
∑

i∈N(Pr i (
−→
Q ,−→v ) + CSi (

−→
Q ,−→v )) + T

(−→p ,−→Q).

The problem under consideration is

max−→q ,−→v
W (−→q ,−→v ) (3)
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The total social welfare

Modification of the total welfare concept for the case where some
final nodes are either exporting or importing the good. At an
exporting node, the transmitted good is sold to foreign consumers.
The total social welfare component is
W i (qσ(i)i ) = qσ(i)i · D−1

i (qσ(i)i ), where σ(i) is the preceding node
for node i . At the importing node
W i (pi ) = −qiσ(i)S

−1
i (qiσ(i)) = −Si (pi ) · pi . Similar modifications

should be specified for “foreign” companies operating in the
national market.

Theorem 1

Under any fixed flows of the good between the local
markets (qij , (i , j) ∈ L) , the optimal production volume at node i
is vi = Si (p̃i ), where p̃i meets equation 4Si (p̃i ) =

∑
j∈Z(i) qij ,

4Si (pi ) = Si (pi )− Di (pi ) denotes the supply-demand balance.
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Formal model of the market

For any L ⊆ L, consider problem (3) with fixed set L of expanded
lines. That is, |qij | ≤ Q0

ij for (i , j) ∈ L \ L, and the fixed costs are

always included in Eij for (i , j) ∈ L.

Theorem 2

The latter problem is convex, and its solution (−→q ,−→v )(L) meets
FOCs which determine the competitive equilibrium of the
corresponding network market.

Let W̃ (L) denote the maximal welfare in the latter problem. Then

problem (3) reduces to maxL⊆L W̃ (L).
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Formal model of the market

Consider problem (3) without construction costs and under

constraint: |qij | ≤ Qij , (i , j) ∈ L. Let p̃i (
−→
Q ), i ∈ N, denote the

equilibrium prices corresponding to the solution of this problem:

(vi (
−→
Q ), i ∈ N) meet Th.1, ∀(i , j) ∈ L

pj(
−→
Q ) > pi (

−→
Q ) + e ijt ⇒ qij = Qij

pj(
−→
Q )− pi (

−→
Q ) < e ijt ⇒ qij = 0

∆Si (pi (
−→
Q )) =

∑
j∈Z(i) qij

Definition 1

The model under consideration meets the flow structure invariance
condition if, for any−→
Q >

−→
Q 0, (i , j) ∈ L, sign(pi (

−→
Q )−pj(

−→
Q )) = sign(pi (

−→
Q 0)−pj(

−→
Q 0)).
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Properties of the welfare function for multi-node network
markets

Function W̃ (ω) defined for each subset ω ∈ L̄ of finite set L̄, is
submodular (respectively, supermodular) if for every L′, L′′ ⊆ L̄ it
holds that
W̃ (L′) + W̃ (L′′) ≥ (respectively , ≤) W̃ (L′ ∪ L′′) + W̃ (L′ ∩ L′′).

Let W̃ be submodular.

1 If ∀i ∈ L W̃ (L) ≥ W̃ (L \ {i}), then maxS⊆L W̃ (S) = W̃ (L).

2 Let W̃ (i) < W̃ (∅). Then i /∈ S∗ := ArgmaxS⊆LW̃ (S).

3 For some S , i let W̃ (S ∪ {i}) ≤ W̃ (S) . Then ∀R ⊃ S

W̃ (R ∪ {i}) ≤ W̃ (R).

The dual properties determine optimization algorithms for a
supermodular function.
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Properties of the welfare function for multi-node network
markets

Consider an algorithm that permits to efficiently find the optimal set L∗

for submodular function W (L) in a typical case where the fixed costs are
sufficiently large.
Step 1: First, consider separate lines and determine the set

L1 = {l : W̃ (l) > W̃ (∅)} including such lines that it is more profitable
to increase their capacities than to invest nothing in them.
Step k = 2, 3, . . .: Assume by induction that we have determined the set

Lk−1 of (k − 1)-tuples Lk−1 = {l1, . . . lk−1} such that W̃ (Lk−1) > W̃ (L)
for any subset of lines L ⊂ Lk−1. Now, we determine the set Lk of
k-tuples Lk such that, for any Lk−1 ⊂ Lk , the following conditions hold:

Lk−1 ∈ Lk−1 and W̃ (Lk−1) < W̃ (Lk).
For every Lk we consider the set Mk of maximal k-tuples−→
l k = (l1, . . . , lk) such that for any lk+1 the tuple (l1, . . . , lk+1) /∈ Lk+1,

and we choose the optimal (
−→
l k)∗ = argmax−→

l k∈Mk
W (
−→
Q ∗(
−→
l k)). We

find k∗ = argmaxkW̃ ((
−→
l k)∗).
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Properties of the welfare function for multi-node network
markets

The desirable properties of the welfare function closely relate to
the flow structure invariance under any increment of transmission
capacities.

Figure 1: Flow structures that determine (a) supermodular and (b)
submodular welfare functions

In general, a chain-type market may include both structures as its
components and meet none of the conditions of super- or
submodularity.
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Properties of the welfare function for multi-node network
markets

Theorem 3

For a chain-type market with n nodes, let the initial prices pi (
−→
Q 0),

i = 1, 2, . . . , n, monotonously decrease in i . Then, for any
−→
Q ≥

−→
Q0, pi (

−→
Q ) ≥ pi+1(

−→
Q ), i = 1, 2, . . . , n − 1, and the function

W̃ (L) is supermodular. The complexity of the search for the

optimal set L
∗

under
−→
Q0 = 0 does not exceed (n−1)n

2 .
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Properties of the welfare function for multi-node network
markets

Figure 2: Star-type market

Consider a star-type market with n + 1 nodes such that, under

initial transmission capacity
−→
Q0, 0 is a transit node,

I1 = {1, 2, . . . ,m} is a set of producing nodes, I2 = {m + 1, . . . , n}
is a set of consuming nodes.
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Properties of the welfare function for multi-node network
markets

Theorem 4

For a star-type market, the flow directions invariance holds if and only if ∀i ∈ I1

pi (
−→
Q0||Q∞

I1
) ≥ p0(

−→
Q0||Q∞

I1
), and ∀i ∈ I2 pi (

−→
Q0||Q∞

I2
) ≤ p0(

−→
Q0||Q∞

I2
), where

Q∞
i =∞, i ∈ I .

Theorem 5

Consider a star-type market that meets the condition of flow directions

invariance. The social welfare function W̃ (L1 ∪ L2), where L1 ⊆ I1, L2 ⊆ I2, is

submodular in L1 under fixed set L2 and is also submodular in L2 under fixed

set L1. Moreover, for any L1 ⊆ I1, l ∈ I1 \ L1, the social welfare function

increment W̃ (l ∪ L1, L2)− W̃ (L1, L2) monotonously increases in set L2, and for

any L2 ⊆ I2, l ∈ I2 \ L2, the social welfare function increment

W̃ (L1, l ∪ L2)− W̃ (L1, L2) monotonously increases in set L1.
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Properties of the welfare function for multi-node network
markets

   

 

Figure 3: Tree-type market
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Some generalizations

Definition 2

Edge l ∈ L is called complementary (resp. competitive) to edge
q ∈ L if, for any M ⊆ L \ [l , q],
W (M ∪ (q, l))−W (M ∪ l) > (resp. 6)W (M ∪ q)−W (M) Let
M1(q) denote the set of complementary and M2(l) the set of
competitive edges for edge l . Obviously,
W (L1 ∪ L2 ∪ l)−W (L1 ∪ L2) ↑ L1 ⊆ M1(l) and ↓ L2 ⊆ M2(l)

So algorithms similar to proposed for sub- and supermodular
functions are applicable if for any l ∈ L we can determine M1(l),
M2(l) and M1(l) ∪M2(l) = L \ l
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Complementary and competitive edges for chain-type
markets

Consider a chain-type market. Let

L1 = {(i , i + 1)|pi+1(
−→
Q 0) > pi (

−→
Q 0)},

L2 = {(i , i + 1)|pi+1(
−→
Q 0) < pi (

−→
Q 0)}

Theorem 6

The market meets the FSIC iff ∀l = (i , i + 1) ∈ L1

pi+1(
−→
Q 0

L1
,
−→
Q∞L\L1

) > pi (
−→
Q 0

L1
,
−→
Q∞L\L1

) and ∀l = (i , i + 1) ∈ L2

pi+1(
−→
Q 0

L2
,
−→
Q∞L\L2

) < pi (
−→
Q 0

L2
,
−→
Q∞L\L1

)

Theorem 7

If a chain-type market meets the FSIC then ∀l ∈ L1

M1(l) = L1 \ l ,M2(l) = L2, ∀l ∈ L2 M1(l) = L2 \ l ,M2(l) = L1. So
all edges in L1 are complementary to each other and competitive
to edges in L2, and vice versa.
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Complementary and competitive edges for tree-type
markets

∀l1, l2 ∃! path L(l1, l2) without self-intersections including l1 and l2,
starting at i ∈ (i1, j1) and finishing on j ∈ (i2, j2). We call l2
initially complementary (resp. competing) for l1, if under

−→
Q 0 the

flows on these edges have the same (resp. opposite) orientation
with respect to L(l1, l2). Denote L0

1(l), L0
2(l) the sets of initially

complementary and competing edges for l .

Theorem 8

A tree-type market meets the FSIC iff ∀l = (i , j)

sign(pi (
−→
Q 0)− pj(

−→
Q 0)) =

sign(pi (
−→
Q 0

L0
1(l)
,
−→
Q∞

L0
2(l)

)− pj(
−→
Q 0

L0
1(l)
,
−→
Q∞

L0
2(l)

)).
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Complementary and competitive edges for tree-type
markets

Theorem 9

If a tree-type market meets the FSIC then ∀l
M1(l) = L0

1(l),M2(l) = L0
2(l).

Figure 4: An example where the FSIC does not provide a possibility to
determine competitive and complementary edges
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Computational experiment

Cyganov (2016) considers chain-type markets with m edges,
demand functions Di (p) = max{0, d f

i − ci/2 ∗ p} and supply
functions

Si (p) =

{
ci/2 ∗ p p ≤ 2d f

i /ci ,

− d f
i + ci ∗ p p > 2d f

i /ci
.

Thus, the net supply is a linar function: ∆Si (p) = −d f
i + ci ∗ p.

The coefficients ci , d
f
i were chose randomly, but meet conditions

p0
i+1 > p0

i , i = 1, ..,m. For every edge k = 1, 2, ..,m, the variable
cost of transmission capacity increment ∆Q is ek∆Q2.
Coefficients ek are random as well as unit transportation costs etk ,
fixed costs efk and initial transmission capacities Q0

k , k = 1, ..,m.
The next Table, Fig. 5-8 show the average and the maximal
numbers of variants for the set L of expanded lines examined for
determination of the optimal set L

∗
for every number of edges

m = 2, .., 50. 23



Computational experiment

Table 1:
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Computational experiment

Table 2:
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Computational experiment

Figure 5: The average number of auxiliary problems for chains with 2-25
ages.
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Computational experiment

Figure 6: The maximal number of auxiliary problems for chains with 2-25
ages.
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Computational experiment

Figure 7: The maximal number of auxiliary problems for chains with 2-50
ages.
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Computational experiment

Figure 8: The average number of auxiliary problems for chains with 2-50
ages.
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