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Introduction

Markets of natural gas, oil, electricity and other resources play an
important role in economies of many countries. An essential
component of such markets is a transmission system. Consumers
and producers are located at different nodes, and transmission
capacities of the lines between the local markets are limited. By
recent estimates, the transmission costs may exceed 50% of the
electricity price for the industry consumers in Russia. This costs are
also rather large for natural gas and oil markets.
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Introduction

The previous researches on such markets (Davidson et al., 2009;
Hogan, 1998) consider primarily models with a fixed network
structure. The recent paper (Daylova, Vasin, 2014) determines the
optimal transmission capacity of one line for a two-node market,
taking into account transmission losses and costs of transmission
line construction. The present study aims to generalize these
results for markets with several transmission lines.



Introduction

We consider the total welfare optimization problem with account
of the production costs, consumers’ utilities and the costs of
transmission lines expansion. The optimal solution of this problem
determines the total welfare value that can further be reallocated
by means of special economic mechanisms letting one to obtain
any Pareto-optimal outcome. The difficulty of the problem is that
an expansion of any line requires valuable fixed costs. If the
optimal set of expanded lines was known, the problem would be
convex. However, the efficient search of this set requires special
methods. In general, the problem is NP-hard (Guisewite, Pardalos,
1990). We distinguish several cases where the social welfare
function is submodular or supermodular with respect to the set of
expanded transmission lines. So the known excluding rules
(Cherenin, 1962; Khachaturov, 1989) are applicable.



Formal model of the market

Let N denote the set of nodes and L C N x N be the set of edges.
Every node i € N corresponds to a local perfectly competitive
market. Demand function D; (p) and supply function S; (p) meet
standard conditions. The consumption utility function:

Ui(q)= J; D' (v)dv. Si(p) = Arg max,(pv — ci(v)) , where
ci(v) is the minimal production cost of volume v at node i. The
total profit of producers at node i is Pr;(p) = fop Si(p)dp.



Formal model of the market

For any (i,j) € L the transmission line is characterized by the
initial transmission capacity QO the unit transmission cost eU the
cost of the transmission capacity increment, including fixed cost ef

and variable cost ey(Q,-j, Qg-). Let gj be the flow from the market
i to market j. The total transmission costs for edge (i, ) are:

Eij(qy) :{ U (‘qu‘ >+ etl.“J |qij|v if |qu| > Q,J s
etj|qij|’ if ’qy|§ QU
(1)
The final transmission capacity Qj is |g;| , if |gj| > Qg-, otherwise
it is Q,-(J’-. The cost of the line expansion is the overnight
construction cost amortized over the life-time Tj; of the line using

) " oC;
discount rate r: eV =r ,”T ; e\f
1_

of increment (Qj; — Qg).

is a monotonous convex function



The total social welfare

Denote Z (i) the set of nodes connected with node i. Under fixed
flows ¢ = (qij, (i,j) € L) and production volumes

= (vj, i € N), the consumption volumes (v;, i € N) are
Vi=v + Zjez(,-) qji, 1 € N. The total social welfare for the
network market is

Z[U vi + Z qi | —ci(vi)] - Z Ejj (qi)-

ieN leZ(i (ig)eL, i<j
(2)

An alternative representation of this value is the total profit of all
the agents in the market: producers, consumers and the
transmission system.



The total social welfare

Indeed, under strategies 8, V, the price p,-(a, 7) at node |
meets the balance equation: D; (p;) = v; + Zjez(i) qji, 1 € N.
The producers’ profit is Pr; = pjv; — C; (v;), the consumers’
surplus is CS; = f:Io Di(p)dp, and the benefit of the transmission

system is determined as T (?, 8) =

Z(i,j)eL, i<j [(Pj (87 7) — Pi (8:7)) qij — Eij(Qy)]-

Then

W (4, 7) = Son(Pri(@. 7 + 5@ 7)) + T (3. 9).
The problem under consideration is

gféW(?, V) (3)



The total social welfare

Modification of the total welfare concept for the case where some
final nodes are either exporting or importing the good. At an
exporting node, the transmitted good is sold to foreign consumers.
The total social welfare component is

Wi(as(1yi) = do(iyi - D7 (ao(i)i), where o (i) is the preceding node
for node i. At the importing node

Wi(p;) = —q,-(,(,-)Si_l(q,-(,(,-)) = —Si(pi) - pi. Similar modifications
should be specified for “foreign” companies operating in the
national market.

Theorem 1

Under any fixed flows of the good between the local

markets (qj;, (i,j) € L), the optimal production volume at node i
is vi = Si(p;), where p; meets equation AS; (pi) = e z7(i) dij»
AS; (pi) = Si(pi) — Di (pi) denotes the supply-demand balance.
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Formal model of the market

For any L C L, consider problem (3) with fixed set L of expanded
lines. That is, |gjj| < Q,-(J’- for (i,j) € L'\ L, and the fixed costs are

always included in Ej for (i,j) € L.

Theorem 2

The latter problem is convex, and its solution (¢, V')(L) meets
FOCs which determine the competitive equilibrium of the
corresponding network market.

Let W(Z) denote the maximal welfare in the latter problem. Then
problem (3) reduces to max;;, W(L).



Formal model of the market

Consider problem (3) without construction costs and under

constraint: |gji| < Qj,(i,j) € L. Let ,5,-(8), i € N, denote the
equilibrium prices corresponding to the solution of this problem:

(vi(@),i € /g meet Th.1, V(i,j) € L
pi(Q) > pi( )+et = qj = Qj
pi(Q)—pi(@) < el = g;=0
ASi(pi(@)) = > jez(iy i

Definition 1

The model under consideration meets the flow structure invariance
condition if, for any

G > G°,(i,)) € L, sign(pi(@)—p;(B)) = sign(pi(G°)—p;(G°))




Properties of the welfare function for multi-node network

markets

Function W(w) defined for each subset w € L of finite set L, is
submodular (respectively, supermodular) if for every L', " C L it
holds that - .
W(L") + W(L") > (respectively, <) W(L'U L")+ W(L nL").
Let W be submodular.
IfVie L W(L)> W(L\{i}), then maxsc, W(S) = W(L).
A Let W( ) < W((Z)) Then i ¢ S* := Argmaxng(S).
For some S, i let W(SU{ 1) < W( ). ThenVRD> S
W(RU{i}) < W(R).
The dual properties determine optimization algorithms for a
supermodular function.
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Properties of the welfare function for multi-node network

markets

Consider an algorithm that permits to efficiently find the optimal set L*
for submodular function W(L) in a typical case where the fixed costs are
sufficiently large.

Step 1: FirchonsidgLseparate lines and determine the set

£, ={l: W(Il)> W(0)} including such lines that it is more profitable
to increase their capacities than to invest nothing in them.

Step kK = 2,3,...: Assume by induction that we have determined the set
41 of (k—1)-tuples Ly_y = {ly,... lk_1} such that W(L,_1) > W(L)
for any subset of lines L C Li_1. Now, we determine the set £, of
k-tuples Ly such that, for any Ly_1 C Ly, the following conditions hold:
L1 € £4_1 and W(Lk_l) < W(Lk).

For every £, we consider the set M) of maximal k-tuples

—I>k = (h,..., k) such that fgr) any lgq1 the tuple (h,..., /’ﬁﬁ) ¢ Lrt1,
and we choose the optimal ( /'¥)* = argmax— W(B*( 1'%)). We

find k* = argmaka((_/>k)*).

ke My
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Properties of the welfare function for multi-node network

markets

The desirable properties of the welfare function closely relate to
the flow structure invariance under any increment of transmission
capacities.

3—»—3—»—% 3—4—3—»—%
a) b)

Figure 1: Flow structures that determine (a) supermodular and (b)
submodular welfare functions

In general, a chain-type market may include both structures as its
components and meet none of the conditions of super- or
submodularity.
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Properties of the welfare function for multi-node network

markets

pl= p2= p3= .. =pn-1  =ph

Theorem 3

For a chain-type market with n nodes, let the initial prices p,-(ao),
i=1,2,...,n, monotonously decrease in i. Then, for any

8 > Qﬁ p,-(a) > p,-+1(8), i=1,2,...,n—1, and the function
W(L) is supermodular. The complexity of the search for the

optimal set L under Q° = 0 does not exceed —("_21)".
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Properties of the welfare function for multi-node network
markets

Figure 2: Star-type market

Consider a star-type market with n+ 1 nodes such that, under

initial transmission capacity Q°, 0 is a transit node,
h ={1,2,...,m} is a set of producing nodes, h = {m+1,...,n}
is a set of consuming nodes.
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Properties of the welfare function for multi-node network

markets

Theorem 4

For% star-type ma%;et the flow directions lnvar/ance holds % and only ifVi € I
Pi(Q71Qi7) = po(Q7I|Q5), and Vi € h P:(Q 1QE") < po(QI|QE”), where
QX =00, i€l

Theorem 5

Consider a star-type market that meets the condition of flow directions
invariance. The social welfare function W(L1 U Lg), where L1 C I, Ly C b, is
submodular in Ly under fixed set L, and is also submodular in L, under fixed
set L. Moreover, for any L1 C I, | € I1 \ L1, the social welfare function
increment W(l ULy, L) — (L17 L,) monotonously increases in set L,, and for
any L, C b, | € b\ Ly, the social welfare function increment

W(Ll, U L) — W(Ll, L») monotonously increases in set Ly.
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Properties of the welfare function for multi-node network

markets

Figure 3: Tree-type market
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Some generalizations

Definition 2

Edge | € L is called complementary (resp. competitive) to edge
q € L if, forany M C L\ [l,q],

W(MU (q,1)) = W(MUI) = (resp. )W (MU q) — W(M) Let
Mi(q) denote the set of complementary and Mx(I) the set of
competitive edges for edge |. Obviously,

W(L]_ Ul,U /) = W(Ll U L2) L C Ml(/) and | L, C MQ(/)

So algorithms similar to proposed for sub- and supermodular
functions are applicable if for any / € L we can determine M;(/),
Ma(1) and My(1)U My(1) = L\ |



Complementary and competitive edges for chain-type

markets

Consider a chain-type market. Let
Ly = {(i,i + 1)|pi+1( Q%) > pi(Q°)},
L= {(i,i + 1)|pis2(Q%) < pi( Q)
Theorem 6
The market meets the FSIC iff¥l = (i,i+1) € L;
1(Q9,, 3% (39, @ dvi=(i,i+1)el
pit1( Ly L\Ll) > pi( Ly L\L1) an (i,i+1) €L
pi+1(@Y,, 9%,,) < pi(QY,, T,,)

2\
Lol

Theorem 7

If a chain-type market meets the FSIC then VI € Ly

My(1) =Ly \ I, Ma(l) = Lo, VI € Ly My(I) = Lo\ I, Mx(]) = L;. So
all edges in Ly are complementary to each other and competitive
to edges in Ly, and vice versa. 0



Complementary and competitive edges for tree-type

markets

Vh, kh 3! path L(h, k) without self-intersections including /1 and b,
starting at i € (i1,j1) and finishing on j € (i2, o). We call
initially complementary (resp. competing) for /1, if under 80 the
flows on these edges have the same (resp. opposite) orientation
with respect to L(/1, ). Denote LY(/), L3(/) the sets of initially
complementary and competing edges for /.

Theorem 8

A tree-type market meets the FSIC iff V| = (i, )
izn(pi(G°) — pi(G0)) =

sign(pi( Q") — pi(Q7)) =

sign(p( @iy Q%) ~ PPy O

21



Complementary and competitive edges for tree-type

markets

Theorem 9

If a tree-type market meets the FSIC then VI
My(1) = LY(1), Ma(1) = L3(1).

Figure 4: An example where the FSIC does not provide a possibility to
determine competitive and complementary edges

29



Computational experiment

Cyganov (2016) considers chain-type markets with m edges,
demand functions D;(p) = max{0, d,f — ¢i/2 % p} and supply
functions

Silp) =

ci/2%p p < 2df/c,
—df +cixp p > 2df/c

Thus, the net supply is a linar function: AS;(p) = —d,-’r +cixp.
The coefficients ¢;, d,-f were chose randomly, but meet conditions
p?Jrl > pf-), i=1,..,m. For every edge k =1,2,.., m, the variable
cost of transmission capacity increment AQ is e, A Q2.
Coefficients ey are random as well as unit transportation costs ef,
fixed costs e}: and initial transmission capacities Q,?, k=1,..,m.
The next Table, Fig. 5-8 show the average and the maximal
numbers of variants for the set L of expanded lines examined for
determination of the optimal set L for every number of edges
m=2,..50. 73



Computational experiment

Number of edges Number of randomly generated problems Average number of examined variants Maximal number of examined variants
2 1000 3,64 4
3 1000 5,60 8
4 1000 7.85 6
5 1000 10,29 2
[ 1000 1324 2%
7 1000 16,14 “0
B 1000 15,30 3
) 1000 2337 258
10 1000 26,39 a7
1 1000 31,28 260
12 1000 35,22 142
13 1000 41,07 167
14 1000 46,65 287
15 1000 54,95 532
15 1000 58,96 1180
17 1000 65,56 538
18 1000 76,65 1064
13 1000 86,90 1088
1) 1000 96,65 1291
21 1000 109,36 1994
22 1000 121,41 2533
23 1000 188,04 32781
24 1000 159,38 8249
25 1000 175,38 8249
b 250 186,64 2129
27 250 212,87 4198
28 250 241,63 4474

Table 1:
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Computational experiment

29 250 236,48 2106
0 250 658,53 65607
31 250 280,02 4168
2 250 437,92 9303
33 250 528,10 11223
34 250 548,84 26473
EE) 230 599,87 13987
36 250 767,60 31406
e 250 2894,81 538888
38 250 4316,50 262422
ET) 250 4066,20 561414
40 250 1027,83 25230
a1 25 1631,52 19227
az s 301144 61671
43 25 1269,80 16754
a4 25 1592,72 19317
45 25 3318,48 31156
46 25 1971,52 9559
a7 25 9958,08 140101
48 25 3076,48 24588
49 5 1130,20 4335
50 25 3921,68 49546,

Table 2:
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Computational experiment
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Figure 5: The average number of auxiliary problems for chains with 2-25
ages.
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Computational experiment

35000

Figure 6: The maximal number of auxiliary problems for chains with 2-25
ages.
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Computational experiment
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Figure 7: The maximal number of auxiliary problems for chains with 2-50
ages.
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Computational experiment
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Figure 8: The average number of auxiliary problems for chains with 2-50
ages.
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